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IMPACT BUCKLING 01’ THIN BARS IN THE ELASTIC RANGE

HINGED AT BOTH ENDS r

By Carel Koning and Josef Taub

SUMMARY

Yellowing the development of the well-known differen-
tial equations of the problem and their resolution for
failure in tension, the bending (transverse) oscillations
of an originally not quite straigh-t bar hinged at both
ends and subjected to a constant longitudinal force (shock
load) are aaalyzod. To this end the course of the bar form
is expanded in a sinusoidal series, after which the inves-
tigation is carried through separately for the fundamental
oscillation and the (n-l)th higher oscillations.

The analysis of the fundamental oscillation distin-
guishes three cases: shock load lower, equal to, or higher
than the Euleriau load.

The investigation of the (n-l)th higher oscillation
also distinguishes between shock load smaller, equal to,
or greater than the (n-l)th stability limit, although on-
ly the first case is of practical significance.

Shock loads in buckling are divided into the period
of actual shock and the period of free oscillations follow-
ing the actual shock.

The investigation leads to functions which are propor-
tional to the maximum stresses in time and space due to
the shock stresses in buckling. These functions are then
compared for the case of shock load lower than ?3ulerian
load with the maximum stresses in static load. It is found
-—---——.—— ._-—_._.-__._..____________,____-____-__.-——.-

*“Stossar”tfge Knickbeanspruc-nung schlanker St&be im elas-
tischen Ilereich bet beiderseits gelenkiger Lagerung.1’
Luftfahrtforschuug, July 6, 1933, pp. 55-64.
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that the former are smaller for short shock periods and
vice versa; that is, in the extreme case, twice as high as
the latter.

l?rom a comparison o.f the functions decisive for the
maximum stresses, it appears that the Eulerian load may be
safely exceeded in shock-like buckling stresses, provided
the shock period is sufficiently short; further, that,
whereas the stresses under shock load above the Euler load
show an unrestricted increase with the shock period, the
stresses in shock loads below the Euler load reach an up-
per limit which is not exceeded during any shock period.

‘.. The report closes with an analysis of the interdepend-
ence betwean the shock stress in buckling and the shock
“~;~lso j P dt. It is found that, contrary to common be-

the stress with equal shock impulse is sensibly af-
fect;d by the shock period. For that reason the determi-
nation of the stress stipulates not only the time integral
JP dt, but also the shock force and the shock period -
a fact.which is of essential importance from the experi-
mental point of view.

I. INTRODUCTIOIY

The analysis of static buckling stresses affords, as
is known, a problem in stability. It poses and answers
the question up to what limit the compression may be in-
creased for given bar dimensions without exceeding the
range within w-hich an unequivocally definable condition of
equilibrium exists. Several equilibrium conditions are
possible after this boundary has been exceeded. On ap-
proaching tho stability limit the rise of the deformation
is such that the bar usually loses its, carrying capacity
before roaching the equilibrium condition. For this rea-
son, the determination of the stability limit is of de-
cisive importance. .,,,

Contrariwise, stressing a bar suddenly in buckling,
‘the suddenness being the short-time interval between ‘load
change and loading period, as shown in this report, the
stability limit is no longer as significant as in the stat-
ic case, and may be safely exoeeded, provided the shock
pe~iod is so short as to leave the ~ar no time to deform
as would correspond to the static equili~rium condition.
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I?rom this it follows that the calculation of the def-
ormations and stresses with. respect to time is the primary
issue rather than the determination of the stability lixn-
it when analyzing the shock load in buckling.

,.

L kg,

D kg,
.

x= - P kg,

Y kg,

M kg m,

qd kg m-z,

qt kg m-l,

m kg,

r m,

a,

~ m,

c m,

T m,

‘! m,

II. NOTAT’ION;

force component parallel to bar axis (=).

force component at right angles to bar axis
(i) ●

force component parallel to axis x.

force component at right angles to axis X.

bending moment.

outside force at right angles to bar axis

outside force parallel to bar axis.

moment loading of bar elements.

radius of curvature of the elastic line.

slope of the elastic line.

deviation of bar axis from straight line in
unloaded condition.

“amplitude” of bar axis in unloaded condi-
tion.

deflection. (See ,fig. 2.)

shifting in direction of x.

S=~P dt kg s, shock impulse. (See footnote, page 26.)
,. ..

E kg m-2,
.

elasticity modulus.

t m, length of bar.

i m, radius of gyration of bar section.

-h.—. .—.— —
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,,..
ma;’. .. area of bar-section.

m4s inertia ‘moment of bar section.

kg S2 m-4, density.

kg m-2, normal stress in x direction.

.,’,’
‘elongation in x direction.

s, time interval,. ,.
.:

s, period of oscillation of the free funda-
mental oscillation.

s, “ shock period. . ,

s-l , frequency of oscillation.

-1Ills, velocity of sound in bar naterial.

phase lag.

ratio of shock load to Eulerian load.
,,

ratio of shock.period to oscillation period
of the free, transverse fundamental oscilla-
tion.

ratio of the maximum moments (taken abso-
lute) in the static and dynamic case.

proper values.h,

A,B,C,D,kl,k2, constants.

Indices:
n=l,2,3,
o

E,

99 .*, etc. ,

-9=s etc. ,

the natural numerals..
refers to quantities appearing with ten-
sion = O.
quantities representative of the Eulerian
buckling. load.

dots over a symbol denote its lst, 2d, etc.,
derivation in time rate.

..
dashes over a symbol denote its lst, 2d,
etc. derivation with respect to a length
(x)*

.-... — ——...—— . ...
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::.:,-:1116 THE DIEFEREN!I?IAL EQUATION.S OF THE SYSTEM
.,. . ., .:..’

Within the c~~vilinear system of coordinates ~ ~
the equilibrium equations for an element of the bent bar
of length ds are as follows (’fig. 1):

(L+~ds )
Cos drp-

(
D+~;ds

)
sin dQ-L+q~ ds=O (1)

,

(
L+~ds sin~+(D +~ds)cos@-D+qdds=O

)
(2)

( )(M+~:ds+L+~ds ) w? +ds sin ~

~+mds=o+;qd ds2 COS
2 (3)

With r d~ = ds, whereby r = curvature radius,
these equations, upon dq --O and disregarding the infi-
nitely small quantities of the 2d and 3d order and with

COS d~ w 1

reduce to
.

9-L- ~D+qt=O
s r (la)

(2a)

aM+D+m=O
m

(3a)

The deviations of the bar axis from a straight line
in unstressed condition as well as the deflections in the
processes analyzed hereinafter, are assumed small compared
to the length of the bar, and the choice is a rectangular
system of coordinates x y such that in first approxima-
tion axis x coincides with the axis of the bar in un-
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...
,.’, .:

stressed attit-ade. Then the relations between the force
components in the curvilinear system ~ ~ and the force
components in the re’ci’arigul:=rsystem X,y ar 0

.L = x Cos, a -1-Y sin a.“

‘..

D,.=“ X “sin a.,+,Y cos a

o,r, since” a = sin a = tan a = y!,

Q=L=YI,
dx r

,.

L“= x+Y”yl .,

xy~+Y~D.. ,,, ,.=-
.;

As a result:

~IJ .
,,

~s+axyl+-yyll’ ,’
as ax aX

W-..y--y ax ‘,”+ a+
z“

- x Yll

These terms are written into (la) to (3a), whereby,
omitting the small quantities of the 2d order, the equi-
librium equations for the slightly bent bar become:

az+ ayl+qt=O~: Y

By eliminating Y they reduce to

::’ . ..- ., .. ..-
.....

. .
., .,.. ,,. . . . . . . ;, ..-:. ...’. . . . . . ‘:. : -.

[lb)

(2b)

(3b)

... ..,’ “:
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(4)

(5)

Assuming zero outside load at the bar element, i.e.,
!lI and qd to be mass forces of the bar element and m
the mass moment of the bar element qd Yf are negligible
relative to q ,

1
because, first, in sufficiently thin

bars the oscil ation frequency and through it the mass ac-
celeration in transverse direction is small relative to
the corresponding quantities in the longitudinal direc-
tion; second, Yf is a small quantity according to the
premises.

Thus the differential equations read:

( 4a)

(5a)

Now y is the deviation of the bar axis from straight
line in un~tressed condition and q is the deflection, so
that y+q must be substituted for y in (5a) (fig. 2).

X and M are expressed in terms of deformation:

x
at

= CSXF= E F ~= E F=

and the mass forces qj and qd * and the mass moment m
as

qt = -PF~$

aa
qd=- pFa#

m =-pJ .a- ~).
at2 (
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IV, SOLUTI ON FOR A.BAR HINGEII AT EI THER END

1. q?~e e Longitudinal ,1 Oscillati ,ons of the Bar

We repea
tudinal oscil
by resolving

!t the well-known foIrmulas for the free longi-
are obtained
ed equation:

lati
(4b)
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B Ax)
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(kl sin pot + kz cos pot)
. .:.

be clamped or fixed at one
tudinally at the other. Th

end
en

for x = o

=01’ x=

30=
.cing the

k =

Double

because
equat io

: sin Ax

differen

of the first boundary co
n to

(kl sin pot 1- ka cos pot

,tiation according to x
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).

and t

on,.

af

thus
dure

‘ford,s:

A!=

P2

wh ich written in (4b gives
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.. . .. . . .

- f E+I~02 p = O “’=hfl=v_A,
Pf).-

,:.

where v =“f

. ~,,. ,,. .,

P
is the velocity of sound in the material.

I?urthermore, because of

together with the second boundary equation we have: ~

An = -u- am, a-z-l ~ ●

2t’ 2t
....*

22

Consequently, the frequencies are:

and the period is

T gTT=4L, .4L 4 t
on=p

—————— — .
v 3 v’ ““””” 2n-lv

2. The Free Transverse Oscillations of the Bar

Disregarding the rotatory inertia for the case of

X=o, equation (5b) becomes:

(6)

. .
The generalized solution is:

The insertion” of

in (6) gives
,.,,.:

.E”.

... .
.“ ..

‘on
= &:$-, : .:.,.. (7j.... . .

I
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for the bar hinged at both

thus modifying (6) to

T =:qn = ~ An sin (pn t + ~n) sin An x (7a)

whereby

By virtue of (’7) t“he frequencies are:

where i = radius of inertia of the cross-sectional area.
As a result the oscillation period of the (n-l)th higher
oscillation is:

T
21-f =2t2——— —------- ●

on=p
on n2 mvi

The ratio of oscillation period of the transverse and
longitudinal oscillations for the fundamental harmonic
(n= 1) in the bar hinged at both ends to that of the bar
left free to shift longitudinally at one end, is:

212 v 1 t—..—— _-
Trvi4t=%I”

I?or slenderness ratios ~ > 21-r the transverse oscillations

are consequently of lower frequency than the longitudinal
oscillations.

3. Transverse Oscillations Due to Constant Shock Load

Eere we analyze the specific case of a bar “hinged at
both ends being stressed under constant shock load X dur-
ing a shock period T, We idealize %ho case by disregarding
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the longitudinal oscillation, i.e. , assumq the tension
(normal force) to be” identical at eirery’point of the bar
during the periodof shock. With the negjlticted rotatory
inertia the resolvable partial differential equation is,
according to (5b):

(8)

The deviations of the bar ’axis from a straight line,
iaeg, the original bar form, are expanded in Fourier”se-
ries conformably’ to the local function sin k n x of (7a):

+Cnsinnhx+ (9)

A:where = is t’he first proper value of the free trans-

verse oscillation (see section IV$2) and en = constant.
Equation (8) resolves to

+ qtn sin An x+ ....

=qtlsin~x+~tasin2 Ax+..o. +

where Tt = f(t)

% = q(x).

Putting these values

EJh4~

of ~ and ~ in (8) gives

n h x-t X l.= ~ n2 ~tn sin n A x+

‘2Ttn-.——sin n A xi- X A= Z na Cn sin n L x= O.
at= n

The equation for the fundamental equation is:

1,
-.



and for the ‘(ri~l-)th”h“igher’oscillation:,.,:., ,...:..”;, : .“. ,“, -,.. .,. . ,.....,. -.., ::.+.:ii~qtti.
n4 E~ k4”-~tn+n2 Z’“~2J~.t’n+~,~.+--- +n2, X ~z

dt
Cn=o (11)

These equation$ are valid d~-rin~ the actual shock pe-,,.
r“iodt .~~t-~-~tlie shock the bar executes frec,oscillations
whose initial conditions are contingent uFon the deflec-
tion and, rate at the termination of the shock...,,. . ‘“ ‘.

,..,:, . ,....:,,”
.,, a)”“Tu~e””fun&mental O“scillatiori : . .,.,.,-. ...’ .,.. ,.

The Eul.er~an .@ackling load for the bar hinged at both
en~s “ahd’subjected t’o static load: (see also V)” is:

P~
2,

=EJ$=EJA (12)

“,“.” ... :,..
By deno,’ting the ~,atio.of ‘s,hockforce to Euleriari ioad

wi-th” a?’ or in other words;””presune

;....

pl?

a = ~ —X-,
p“E ,,

d2~t—.-—— +EJ~4
dt2

and (10) becomes

(1 =- a) Tt &ac”E.J~4

. .

(.13)

index 1 being omitted for simplicity.

The resolution of this equation must ‘differentiate
between three cases:

1. x>. P7J, that is,. .,ae 1,..,!..,

2. x=- P~, 11 ‘t, a=l

3. X<-PX, II II, a’>1

U) Shock load lower tha’n the Enlerian lo,ad*.

(a<l). ,, :.’

(14)

——-.—...——-,.--—_ ..-.--. —-—..-.-. . -. . -—-. .- ———---.-___ .-—----------- —---------- ----------------

*This also i~clu.des all’ c&Se S”:With lle:ga:t~ve. ‘a, t:ha.tis,
the cases of shock stresses in tension.
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,, Putting ~t = fit + it.:. In (14),, whero

resolution of the homogeneous equation and

748 13

fit donotos tho

% the effect

of the disturbing function; the resolution of-the homogene-
ous equation

dzfit
‘—+ EJ~(l-a)fit=OP F dta

,,.

gives m = kl sin p t + k2 cos p t,

because W. f (1 - a) > (). Consequently,
P~

The insertion of these values in the homogeneous equa-
tion gives the frequency:

where P. = frequency of the free fundamental oscillation
(see 11’,2).

The effect of the disturbing function on the right-
hand side of (14) is found from

at

Consequently,

whence,

‘h =p(klcospt-kz sin pt)”” (17)

Assuming ~t =Oand {t= O for the start of the
shock, t = O, (16) and (17) give

1 11 I I I Im I I
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“’”’’f~hesolution is:

Tt = i–~~ C(l - Cos p ‘)

and consequently,

(18)

(19)

shock period.. Then at the end of the shock:
..,

––a–-C (1 - cos pT)ni=~.a (20)

(21)

The incipient free oscillations following the end of
the shock are, according to (6):

m= Tt ‘-&=Csin(pot+q) sin Ax (22)

with V = phase shifting. For this period of the processes,
(2o) and (21) are the initial equations. Thus,

Csin(poT+~)=l~a C(l-COSPT).-———-

Cpocos(povtcp)= ~–~–; c p sin p T.

The addition of the squares of these equations gives:

[(1 - Cos p 7)2 ‘+ g- sin2 p T]
Po

to “(15),

J
—..—
2- 2 Cos p T - a sin2 p 7.

We use the oscillation period of the free oscillation

T = Sx as time scale and introduce
Po

T =bT= ~~ b,
Po



. .———.

N.A, C.A. Technical Memorandum No. 748 15

Our interest centers about the maximum bending moment
“which is proportional to the maximum curvature (a dax’).
Formula (>2)- concedes

.

?JJQ.
‘“ c ha 8in (FO t

?)X2

The curvature is maximum in

(x = $.) and amounts to

..

the center of the bar” -

where
..—.— --.————- ———..—-

f(a,b) = f= J2-2 cos(2nb~~)-a sin2(2nb &Z) (23)

This value is decisive for the maximum moment q~~s.z
the actual shock period. However, it may happen that a
still greater moment occurs during the actual shock period.—._.—-----
Such is tho CC.SC:when the ShOCk lasts at least long eno:agh -
until the hi~llest -possible deflection has been reached once,
According to (18), the greatest possible deflection during
the shock occurs once when Cos pt = -1. Consequently, if

l-r l-r 1
T9-=---

P Po J=

or

the maximum moment is already reached ~u.~~gg the shock,

On the other hand, according to (18),

T=~:~@-cosPt)sin ‘x

during the shock$ hence .:,,

. .

IJ ,-+- . . . . . ..--. — . ..- —. —.. -. .-, .. .. ........--.—--,.— - .. ... ,,.,..,,-.., -.-—
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is approximately -proport.io,nalto the maximum moment, whereby
.“’.’

f(a,b) = 2 ~ a--——- (24)
,. -a

1
“To sum up: For shock periods b < ------— formula (23)

2 Jr;’

is valid; for shock periods b %
1----—. -- (24) is the de-

2 J=’
cisive quantity for the maximum moment. For b= 1--—-—--

2 ~-;’

(23) steadily resolves to (24). The latter represents an
absolute maximum value of f(a,b), which may not he ex-
ceeded with any shock period.

~) The shock load equals the Eulerian load (a = 1)

In this case (14) reduces to

d2~t——. = ‘2?(4 c.
dt2 PF

Integrating twice gives:

–~-~4gt2+k1t+ka.Tt = 2pl?

The initial conditions:

~t=Oagdfit=O for t=()

concede Zcl = O and kz = O. Therefore$

and for the end of the shock,

(25)

(26)

(27)
and

. —
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The time interval after the actual shock is agairi “com-
puted with (22) and the initial conditions for this shock
period are posed in (26) and (27). Thus ,

,.

hence,

or, when taking

into consideration,

c =2nbc r---TT2 b2 + 1.

Equation (22) a~ain yields

where
f(a, h) =211b ~2b2+l (28)

Contrary to the case of a<l, equation (25), appli-
cable during the shock, is now aperiodic, hence the deflec-
tion during the shock may not exceed that at the end of the
shocko But the latter is, conformable to (28), the start
of the free oscillation.

‘Y) The shock force exceeds the Eulerian load (a > 1)

In this case,

and the solution of the homogeneous equation corresponding
to (14), manifests:
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.. ‘
.;

m =kzshpt+k=chpt,

whence,

which, written in the homogeneous equationj gives

P2 = EEL f(a. l)= Po2 (a-1)
pF

(29)

PQ = frequency of the free fundamental oscillation.

EJ~4(l-a)~t=aCE Jh4

—
concedes the particular integral Gt at

Consequently,
. . .

nt =klshpt+k2chp”t -~~~~’” (30)

{t =p(klchpt+kzshp t) ‘; (31)

Assume qt =Oand~t=O fort =0. Then (30)

and (31) give

ka=ac--—.- and kl = O
a-l

.,
whence,

.,

Tt = a: ~ c (chp t - 1)-----
~32)”

it = ;-:y P shP t“’

aild for the end of the shock i =.T:

%,=,a.; 1
-———... c (ch p .7 - .1) . J “(33)

(34)
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. ,..,

>. –,.,-.. I’o,rthe free oscillations after the shock (22) and—---—
the initial conditions (33) and (34) ‘are again appllcable~
Then,, :.

:...’ “..-
... ..... . . . . . . .-. : c sin’ (p* T + q) = -#%&~ (ch;.P T -,1) :

.: ,...... .... . . .. ... C ~o.CQ.S (PO T + q) = -+ ~ p sh P 7
.,..: ,.:

and, with due allowance f“~r (29S

c
a= c 2-2chpT+ash2, pT

a-1

c
a= --—— c 2-2 ch(2mb~~) -t- a sh2(2nb m- 1).

a-1

According to (22) the maximum curvature is again

where

f(a, b).= ~r 2-2 ch(2mb&~) +a sh2(2nb~~) (35)

Since (32), applicable during the shock, is aperiodic

for Tt and increases with t, no greater deflection can
‘occur durin~ the shock than the maximum deflection reached——-.—
after the shock;-—__.— but that is comprised in (35).

b) The (n-l)th higher oscillation

Substituting X = - a E J h=, equation (11) becomes:

Again we differentiate between:

1. a<n2

,.. 2. a=n2, . .
.-. .. .....U-

3. a>n2

. .
-
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of which the first is of primary interest, Even with the
first higher oscillatio~ (n = 2), cases 2 and 3 refer to
sho’ck loads at least 2 = 4 times as high as the Eulerian
load. Such excesses of the Eulerian load may be disregard-
ed and the analysis confined to aen2.

The resolution of (36) for acn2 is similar to that
cf (14) for ael. Let the solution of the homogeneous
equation be

Vtn = kl sin pn t + k2 COS’J)n t

so that

‘2fitn =

—(T
- Pn2 fitn

whiti gives the frequency

Pn = n ‘L2
r

n- J~-=
n Polfi

PF
(37)

P = frequency of free fundamental oscillation. (See
s%lction IV,2.)

The effect of the disturbing function follows from

n2EJ~4(n2- a)~tn=n2a EJ fl~n

at
a

5tn=”n2 - ac————-

Whence the soll~tion of

T+jn = kl sin p

kl and ka are again
.

‘Otn =0 and~tn=()

(8) at

defined from the initial conditioils:

for t = 0. The result is

a
Ttn = ——_— ~11 (l”- cos”p~ t)

n’-a
(38)

‘itn= n2––s–—pn Cn sin pnt = —–S--5-– pol ~n sin pnt
-a -

b
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For. t .=,T, we have:

,.,... ,. .
. ..’. a

%n = ~a
.-—-— cn~i’- cospn’T)”- a’

. . .

(30)

~~ (40)

.
‘..

After the shock the %ar executes the (n-l)th free
higher oscillation, which is governed by

‘b = Cn Sill (112po~ t + ~n) Sin n ~ X (41)

With C and ~ defined from (39) and (40) as initial con-
ditions:

Cn sin (nz po~ T + Vn) =

Cn n2 po~ cos(nz p~~ ~ +

gives C at

a——_ — ~n (1 - COS Pn T)
n2-a

__!LS–= poz en sin Pn 7

‘n)=~a

Because of (37) it is

Pn T =2nTrb J n’-a

when T = ~–~ b.
Po ~

Therefore,

According to (41) the curvature is

i32~n =
37

- Cn n2 L2 sin (n2 pox t + Qn) sin n ~ x

and the maximum curvature,

a2qn
max ~-p = Cn n2 ~ = ‘~ ~n f(n,a,b),
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where f(n,a,b) =

r ...——
n2 a

= -— 2-2 cos(2nnb KLTZ - ~- sin2 (2nnb ~z (42)
n2-a n2

The validity of (42) for the maximum moment is decis-
ive only when it occurs after the shock. If the actual
shock lasts at least long enough to permit once the occur-
rence of the highest possible deflection, then the maximum.
moment occurs during the actual shock. This is the case
according to (38) when COS Pn t = - 19 that is, when the
duration of the shock is

In this case the curvature is

FJ2Tn —a~—— = —-—~x2? ~2-a ~n2f (l- COs Pn t) sin n L x

according to

rf)n . .--a-––G(1 “ COS Pn t) sin n A X
-a

and the maximum curvature is

with
2an2

f(n,a,b) = nz - a.—.- --

Summed up: for shock period

(43)

equation (42) is applicable;
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““ ftrZ---‘“” ““‘“

(.43) is valid as the quantity deciding the maximum moment.

1
When b = ‘–-

2 n~v:’
(42) becomes (43). The lat-

ter represents the maximum value of f(n,a,b), which is
not exceeded in any shock period,

V. NUMERICAL INTERPRETATION AND DEDUCTIONS

The behavior of the bar during shock load is best eval-
uated by comparing it with its behavior under static load.

The differential equation of the static load is:

(44)

with ~ given from (9). Limited to the first term of (9),
the resolution gives:

q=Clsinhx+Czcos Ax

or ‘T = Cl sin A x (45)

since ~ =0 when x=O.

Putting (45) in (44) gives k = ~ and

c1 =
cl—-————.-.—-—

-EJn21’——— --
x IT

consequently,

Cl sin A x
“T = ‘–—’”--–-””-—..

. E_L_II: - ~
x 12”

(46)

for -X=PE=EJ:;,
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that is, the Ealerian load, T = a. ,Therefore, and with
consideration of (13),

T=l:a--..-—Cl sin h x

...
‘;he”nce d2q ITS

,!.
‘ax ;25”= F

Cl f(a),., (47)

with ‘f(a) = ~ a---—- “.
-a .

The ratio c of the moments due to shock load and
static load is:

c = r 2- 2 cos(2nb~~aY - a sin2(2nb/~ (48)

according to (23) and (47) when a<l and the duration of
the shock is

and c = 2 (49)
!.

according to (24) and (47) when the shock period is

1
bz -—..-—-—..

2 dT—a-

It is readily seen that the c terms are dependent on
the magnitude of the eccentricity c. (See fig. 3.)

It will be noted that the ratio c of the dynamic and
static stress for short shock periods is smaller, at longer
periods greater than 1 and its maximum value 2. Moreover,
for equal shock durations, ratio c is smaller as the
shock load is higher.

When plotting, as in figure 4, that shock load b
a~ainst shock load a for which the dynamic equals the
static stress, it is seen that corilparatively long shocks
;are necessary vicinal to tne Eulerian load to raise the dy-
namic stress on a level with the static stress. With a
shock equivalent to 0“.97 times (approximately) the Euler-
ian load, this shock period equals the natural oscillation
period ..ofthe free ,ba$.
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:..

. . .. If”tho” formof t-he bar-issuch as to exactly producb
the (n-l)th higher harmonic, by the same argument the nth
stability limit is

-x= EJ *#

when the bar produces anly the fundamental oscillation and
the decisive function for the maximum moment is

.,-, ;a. . ,.

,“
f(a,n) = ~-a— .

=2 -.;a,
(50)

.,,. . . .
Wh&

bs
1.--————— --

2 n~F=” a
.:..”

the comparison with (42) and (43) gives

c = ‘2-2 cos(2nnb~~) - ~~ sin2(2nnb~~j (51)

and

when

of validity .of (51) is limitedto very short
Even for n = 2 and a = 1, ~ the upper lim-

The range
shock periods.

“ it”of b is 0..144 only. Since for very short shoc~-peri-
: ods the premises, of the calculations are in any case hard-
.Iy met (reference 1), the evaluation of (51) may be for~-
gone, especially since the case where exactly only the
(n-l)th higher oscillation occurs, is practically without
significance-

By contrast, the case where the bar shape” i.s such as
to incur several oscillations concurrently, is much more
important. But obviously this case does not lend itself
to general treatment, because the” results are substantial-
ly affected by the relative magnitudo and tho sign .of en
in (9).

.
. . .

. . .
The resolution of. (“44) is applicable only to “the cases

for. the”evaluat’ion of the data of the dynamic investiga-
tion in which the load lies below the stability limit, i.e.,

& . .. ............ ... --.-.. -.. ---- ..---...-–——.
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for n = 1 in the a<l range: for n = 2 in the a.<4
range, etc. Fvr loads above the stability .limit (44) should
be disregarded in favor of the nore exact .e’quatioriof the
~,el.ast’icline, the resolution of which is, however, quite
complicated. For that reason the comparison of the data
is limited to n = 1 for a< 1, a = 1, and a>l, re-
s.pectively. The results are illustrated in figure 5, in
logarithmic scale. The functious f(a,b) from (23), ‘:(24).,

(28), and (35), proportional to the ~aximum moments are
plotted for divers a against b.

It is readily seen that the Eulerian load. xnay be ex-
ceeded in buckling stresses due to shock;- provided the
shock period itself is” snort enough~ Moreover, the maxi-
mum dynamic stresses are fostered by increasing shock load
a and period b. But, while attaining ‘a limit value for
shock loads below the Eulerian load (a < 1) for a given
duration of shock, which cannot be excoedcd in any shock
period, they increaso arbitrarily at shock loads above the
Eulerian load.

VI. EFFECT OF

Frequently

SHOCK IMPULSE ~ P dt ON THE STRESS

it is assumed that t“he”,stress,due .$~’.shock
load P is depeildeilt only on the shock @pulsb~,~”P dt,
that is, individually unaffected by’ the magnitude .of the
shock load and the duration.* :.

The results af the present, paper disclose the error
of this” assumption, for otherwise only the product a b
would appear as sole variable of the terms for f(a,b).
Again, it n]a~~be asked whether or not it would be approxi-
matel~ co?rect. For that reason, we compute the functions
f(a,b) versus b for several values of S =JPdt=ab.
----------------------------------------------------------
*I”t is cormlon practice to designate the time integral
~ P dt as “shock load, ” whereas the quantity P is not
specifically expressed. This practice is probably,due to
the concqpt that only the timeintegral .{ P dt ‘“is decis-
ive foi” the shoe’k-process, whereas nci special importance
atta”che.s to ‘quantity P. But the authors of this paper
Eatie, ‘on the strength of their investigations, drawn dif-
ferent conclusions, and believe it, in fact, to be more
logical to express P, which has the dimension of a force,
as llshock loadll and time i-ntegral j P dt with the dimen-

nshock impulseOsion of a force times time interval as It
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:.. . Con”d-entreating on the fundamental. oscillation”,’ there.!’=,.....”.e../.-.. ... ..
are three ranges of b for a stated value of S = ab:

.:,.,

1. range O <b< bz for. a >1.

2,. 11 bz<b<ba,for a<l to the. ,..
extent that the maximum stress occurs
after the actual shock period..—--

3. range b~<b when the stress occurs
during the actual shock period.

,..
..

The values for bl and bz may be defined as fol-
lows:

a = 1 for bl, consequently, bl = S;

b~ = -–-A––– for bz ,
2 Jn

or

b2 = ; (s +J”)

because

s
a

= i;”

For f(a,b):
,

equation (35) is valid in the raage of O<b<bl

II (23) “ “ “ “ “ “ bl<b<bz
..

II (24) II II II II 11 II ba<b.’.

II (28) “ “ “ “ “ “ b = I)z

The value of f(a,b) for b = O is obtained by put-—

~ in (35) and permitting b to approach,, zero.ting a = b
Then,

lim f(a,b)= j; sh’ (2 IT =7) = ~~~
b=o ,.

..
=.
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With these formulas we computed f(a, b) for S = 0.25s
0.50, 0.75, 1.,00, and 1.25,. .as well as for various b val-
ues”: .The” r“esul’ts are p,lott,ed“in ftmre 6. The ordinates
of the indi.vidual’curves “are noticeably not approximately
constant with the parameter S or, in other words, the
stress duo tci a shock load cannot “even be approximately
given in ,function of the shock imp,ulse~ On the contrary,
shock ‘load and shock period” must ~e individually known
if the ‘shock stress i,s to be dotormined.

This r?sult is of great importance for shock tests.
Shock load and shock period must be included in such ex-
periments, although this will be more difficult to accom-
plish than recording the shock impulse.

APPENDIX

Effect of l&inor Changes of the Original Bar Shape

on the Results

The premise of the interpretation of the results was
the selection of the original bar shape such as to precise-
ly insure the occurrence of the fundamental oscillation
due to shock load. In the example hereinafter, we attempt
to show the effect of a minor change in the origfinal shape
of the bar on the results. For simplicity the range is re-
stricted to a<l, that is, to the range within which the
ratio c of the dynamic and static stress is readily ob-
tainable.

We assume the shape of the bar such as to develop
aside from the fundamental oscillation, yet the second
higher oscillation. Then (9) reads:

l-r
with - = k.

1

For shock periods,......
“> 1

l)= ——-———. ;
2Ji’=-i

. . ..
.! .,’,.., ,

the equation

pz
1 1——_________ ______ ___.——

,2n’$~—a-’= 66 - a

. . ,.’ ..
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.
,“’ .”.,
is particularly applicable. Accord ing”to IV;3a and IV,3b

..t.h.e..maximum deflections occur durin~ the shock. The cur----
vature of the e“lastic l“ihe is expressed by

1[~ =~f i.%
-a (l-’”’

cos put) sin Ax+
.,

. . .

+ 1~~:~; (1 -..COS p= t) #’in 3 ~ x (52)

points of the maximum and minimum values of this
~esult from the resolution of

= a h=
[

._c& (1 -
l-a

Cos”i t) “Cos A x +

27 c
-1-~–––~

1-a(l-cOs p3t)c0S”3Ax 1=0

With
COS3LX=4COS3L x~3cosix

(53) resolves to Coihx=o

and

27 c
–CL (1-COS pt) + –;–: (l-co’ p3t)(4 COS2 AX-3)=0
l-a

(53)

( 54a)

(54b)

I?irst we consider the maximum for x = $ of (54a).

Here (52) gives:

I [aaq

3x- ‘ac
~+i (1-COS pt) - ;-:>; (1-COS p3t)1 (55)

,.
9 C3

To the extent that ]:c,sS I cl, hence ————-g-a ~

cl-——_— , the””limits of the- maximum curvature are
l-a

( 56a)

when Cl and C3 have the same sign, and
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(56b)

7

x= JL
2

,

when c1 and 63 have different signs.

: ~Comparing these results with ,the value of the curva-
ture at x = 1/2 in the’ static case

d2~

I (
cl 9 C3-—- =

dx2 t )
a ?i2~-–- - ~—— ,

-a -a
‘=5 ,,,,

the ratio c of the dynamic and static stress is found to
lie between

I
Cl (9 - a)

25052 ---.—— ——_____ ___.__,
Cl(9-a)-9c3(l-a)

when cl and C3 have the same sign, and

.1

c~(9 - a]
2 -——-—____________ I5C52

Gl(9-a)-9c3(l=-~

( 57a)

(57tl)

when they ‘have a different sign.

This leaves the question, whether or not at some

point other than x = $ an upper limit of 32‘g
s max

may

occur which exceeds the values given In (57a) and (57b).

a2’fl
Superior limit values of –-–

ax2 max
may occur at

.
points other than x = $ only when x meets equation

(54 b). Let xl be a real root.of this equation. Then

3COS2 A xl = - - 1 9- a~ll - Cos p t--- -———- -— -...————-..——-
4 108 1 - aE~l- Cos p3t

hence,
siu 3 k x= = sin h X1(-1+4 COS2 A Xl) =’

( 1 Z:& SL :.ZXLU.= sin A xl 2 - --–
27 l-a Ca l-cos p t)

Then, according to (52) the curvature at x = xl is:
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2 CL
Z1-a

(1 - Cos p t) +

11

E3 show the same sign, and

(59h)

when otherwise.

The requirement that the curvature at x = xl for
equal signs c1 and C3 shall at the most be the same
as the maximum value of (56a) results in

2a A2
(

2 cl 18 C3 <
sin A xl - ----- _____

31-a )1‘9-a=
2a A2 i~5— ●

-a

This condition is always met:

I2 cl + 18 c~ < ~~- ——— _____ =
31-a9-a l-a ‘

i.eg; for

IIC3<3

F:=g
(60)

because
1- a~l-—___
9-aS-

For different signs of cl and C3 the result is
similar, according to (56b) and (59b):

: )i2 +<L < 2a A2
(

cl 9 c=
sin A xl =

)1
--——.. - _____ .

-a 1- a 9- a

This condition is met for every value of Cs as can
readily be seen. “,,

I
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Lastly, it may happen with equal signs of Cl and ~3
d2,q

that the maximum value of —
,dx2 I

is higher at x = xl,

2
in the static case than at x = ~. This case which, as

E
is readily proved, o~curs for + ~ ~,

9
simply results

in a lowered upper limit of (5’7a).

Summed up, it may be stated that, so far as I~3 ~
Z;

1 1
-3 the investigation may be limited to the point x = -.
6 2

For the case of fundamental oscillation during the
shock period, we had c = 2, according to (49). The high-
est possitle percentage deviation from the figure is, ac-
cording to (57),

---–----—-–--—”’------–—--— 100 > —--y- 100

(9”- a)-9~ (1-a) 1- Z;

it is seen that this maximum percentage deviation of
c from c = 2 decreases as the shock load (a) increases,
The deviation is highest for vanishing shock load, that is,

f~ 100*it is slightly greater than the quantity cl The

closer the shock load approaches the Euler load, the less
the effect of the course of the original eccentricities
on the results. With equal sign of cl and C3 the val-
ues c = ~ are excecdod; with unlike signs they fall bo-
10W c = 2.
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Figure 3.-Ratio c of maximum moments under dynamic and
static load versus ratio b of shock period

to period of free oscillations for various ratios a of
longitudinal force to Eulerian load.
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Figure 4.-“Shoclsperiod” b for divers “shock loads” a,
for which the maxinnun~naiiic and static

stress are equal, i.e. c = 1 .
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proportional to

the maximum moments plotted
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Figure 6.- Stress f(a,b)
versus “shock

loadlib, for various
shock impulses S= f(a,b)
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